Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Methyl {2-[3-(2,4-dichlorophenyl)-1,2,4-oxadiazol-5-ylmethoxy]phenyl}acetate

Zhi-Qian Liu,* Zhi-Qian Liu, Zhi-Tao Xing, Xiao-Chen Yan and Hai-Bo Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China

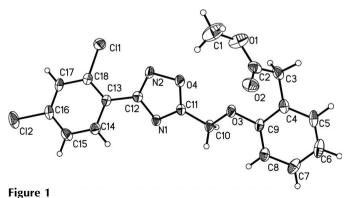
Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.006 \text{ Å}$ R factor = 0.069 wR factor = 0.178Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

The geometrical parameters for the title compound, $C_{18}H_{14}Cl_2N_2O_4$, are normal. The torsion angle between the oxadiazole ring and its attached benzene ring is 25.4 (2)°.


Received 4 September 2006 Accepted 6 September 2006

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological effects, such as anti-inflammatory (Nicolaides *et al.*, 1998), and antipicornaviral (Romero, 2001) properties. As part of our studies of these compounds, we report here the crystal structure of the title compound, (I) (Fig. 1).

$$CI$$
 CH_2
 CH_2
 CH_2
 CH_3
 CH_2
 CH_3

The geometrical paramaters for (I) are normal. The mean plane of the oxadiazole ring (C11/C12/N1/N2/O4) is almost coplanar with the mean plane of the C4–C9 benzene ring [dihedral angle = $2.3 (2)^{\circ}$]. Conversely, the mean plane of the C13–C18 benzene ring is distinctly twisted with respect to the oxadiazole ring [dihedral angle = $25.4 (2)^{\circ}$] perhaps as a result of steric repulsion between N2 and Cl1 [separation = $3.050 (4) \,\text{Å}$; van der Waals contact distance = $3.30 \,\text{Å}$].

A vie

A view of the molecular structure of (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).

© 2006 International Union of Crystallography All rights reserved

organic papers

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 5-Chloromethyl-3-(2,4-chlorophenyl)-1,2,4-oxadiazole (20 mmol) in acetone (20 ml) was added to this mixture. The resulting mixture was refluxed for 6 h, then concentrated under reduced pressure to afford the crude product. Pure compound (I) was obtained by recrystallization from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$C_{18}H_{14}Cl_2N_2O_4$	Z = 4
$M_r = 393.21$	$D_x = 1.479 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.4910 (15) Å	$\mu = 0.39 \text{ mm}^{-1}$
b = 15.613 (3) Å	T = 293 (2) K
c = 15.100 (3) Å	Block, colourless
$\beta = 90.59 (3)^{\circ}$	$0.30 \times 0.10 \times 0.10 \text{ mm}$
$V = 1766.0 (6) \text{ Å}^3$	

Data collection

Nonius CAD4 diffractometer	1958 reflections with $I > 2\sigma(I)$
$\omega/2\theta$ scans	$R_{\rm int} = 0.037$
Absorption correction: ψ scan	$\theta_{ m max} = 26.0^{\circ}$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.891, T_{\max} = 0.962$	every 200 reflections
3737 measured reflections	intensity decay: none
3467 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.069$	$w = 1/[\sigma^{\bar{2}}(F_0^2) + (0.076P)^2]$
$wR(F^2) = 0.178$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
3467 reflections	$\Delta \rho_{\text{max}} = 0.34 \text{ e Å}^{-3}$
235 parameters	$\Delta \rho_{\min} = -0.37 \text{ e Å}^{-3}$

All H atoms were placed in calculated positions, with C-H = 0.93-0.97 Å. They were included in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm methyl~C})$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359

Romero, J. R. (2001). Exp. Opin. Invest. Drugs, 10, 369-379.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.